Funding boost for remote cardiac care appeal

Bristol & Weston Hospitals Charity (formerly Above and Beyond) has been awarded £57,000 from NHS Charities Together to support its appeal to provide at-home monitoring service for BHI patients with pacemakers.

Thousands of BHI patients have a cardiac implantable electronic device (CIED) or pacemaker to help control or monitor irregular heartbeats. Having a CIED requires them to attend hospital as often as every six weeks to be checked.

However, COVID-19 restrictions have severely affected patients’ ability to attend their hospital appointments. The average age of a person with a CIED in the UK is 75 years old, which puts these patients in a high-risk group.

Over lockdown, the BHI identified technology that would allow CIED patients to be monitored remotely instead. By providing patients with home monitoring equipment that they place by their bed, staff could routinely assess patients and perform essential tests without the patient leaving their home.

Remote monitoring reduces mortality in these patients as it enables the CIED clinic to detect heart failure events at an early stage and intervene before the patient develops symptoms. This includes being able to detect Atrial Fibrillation, which is the leading cause of stroke in the UK.

Following a successful trial in a cohort of complex CIED patients, this year Bristol & Weston Hospitals Charity launched an appeal to provide remote monitoring technology for all CIED patients at the BHI. This will reduce both waiting times in the clinic and the number of hospital visits overall, while providing an even more effective level of service and care.

The NHS Charities Together award, announced in September, comes as part of a package of support for 10 different health projects that will benefit more than 100,000 people in Bristol and beyond, not only those with heart conditions. Find out more

 

Restoring respiratory sinus arrhythmia in heart failure

A CiC award will enable Eva Sammut to test the safety and feasibility of a novel device to reinstate RSA in dyssynchronous heart failure.

Confidence in Concept (CiC) awards fund proof of concept studies, which provide robust evidence of the feasibility of a proposed solution to a clinical need.

Dr Eva Sammut, NIHR-funded academic clinical lecturer in Cardiology at the BHI, received a £100K Elizabeth Blackwell Institute MRC CiC award in January to look at the feasibility, safety and effectiveness of a novel device to restore respiratory sinus arrhythmia in patients with heart failure.

Q: Why is your research significant?

Heart failure is a global clinical pandemic with clear unmet clinical need. Despite some advancements in therapy, prognosis remains poor with a 50 per cent five-year mortality representing a significant societal and healthcare burden.

Respiratory sinus arrhythmia (RSA) is a physiological phenomenon of a subtle increase of heart rate during inspiration and the converse during expiration. RSA is a major component of physiological heart rate  variability, a sign of good cardiac health, and is known to be lost in patients with heart failure. Loss of RSA is associated with increased ventricular  arrhythmia and sudden cardiac death. Restoring RSA in heart failure patients could improve their life  expectancy and markedly reduce hospitalisation costs. Existing preclinical models are inadequate to validate the safety of new treatments in this priority area.

Q: What are you developing?

Our group have developed a novel device which is able to reinstate RSA. Our preliminary results are very promising and demonstrate feasibility. Further proof of concept data from an advanced preclinical model is now pivotal to ensure the safety, feasibility and applicability of the new device to  progress it toward bedside to benefit patients.

This project will test the safety and feasibility of this new technology in the setting of dyssynchronous HF. This is a complex form of heart failure that responds poorly to the best available current treatment –  a specialised pacemaker named cardiac  resynchronisation therapy.

This study will be performed at the University’s Translational Biomedical Research Centre facility. We will develop an advanced preclinical model of dyssynchronous heart failure with balloon catheter myocardial infarction and superimposed pacemaker-induced ventricular dyssynchrony. Next, we will use this model to test this novel pacemaker approach to reinstating respiratory sinus arrhythmia in addition to cardiac resynchronisation therapy.

Q: Who are you working with?

A unique multidisciplinary team has been assembled including Professors Julian Paton, Raimondo Ascione and Alain Nogaret, and Drs Tom Johnson, Ed Duncan and Vito Domenico Bruno, who are co-applicants supporting this project.

We are also working in collaboration with Ceryx Medical, a spin out company formed by the universities of Bristol, Bath and Auckland.

Q: What next?

We are delighted to receive this funding to be able to take this exciting new technology to the next  developmental stage. This project is critical to ensure safety, feasibility and applicability of the new device in this setting. If positive results are demonstrated this would pave the way for larger, efficacy translational studies, with a view to reach patients in the NHS  within the next five to six years.

This post first appeared in the March 2021 BHI Newsletter