Mechanisms of cardiovascular complications in COVID-19

Paolo Madeddu discusses the progress of a timely research project.

Q: Why is this research significant?    

The coronavirus that causes COVID-19 enters the body through the epithelial-endothelial barrier of the lung and then spreads systemically. Its most severe manifestation is severe acute respiratory syndrome, where the epithelial-endothelial barrier is damaged to a level that fluid escapes into the alveoli. This makes it difficult for the lung to expand and allow the physiological exchanges of gases, resulting in severe hypoxia, shock and systemic organ damage. Organ damage is also caused by the virus’ ability to bring about a systemic inflammatory response and evade the immune system’s defences.

Pericytes – cells surrounding the vasculature – are essential to maintain vascular stability. We think that they can be damaged by the virus, which contributes to pulmonary and systemic damage.  We also think that the damage starts very early, when the viral S protein engages with the entry receptors expressed on cells. This is sufficient to activate detrimental signals in the pericytes and eventually prepare the ground for the virus to spread.

Q: What do you aim to do?

Our research aims to determine which receptors are expressed by human cardiac pericytes (ACE2 and also CD147, which is a more controversial receptor); determine if the S protein alone can induce signalling in exposed pericytes in culture; understand the functional consequences; and verify whether we can shield pericytes by blocking the interaction between S protein and receptors.

Q: How are you progressing?

The data we have gathered confirm the entry  receptor CD147 is expressed in pericytes. However, the expression of ACE2 receptors was low.

The S protein induces the phosphorylation of ERK1/2. This is a kinase enzyme involved in various cellular functions, but also used by the virus to activate RNA polymerase (the enzyme that makes copies of RNA and is used by the virus to make copies of itself). This reaction makes the pericytes less able to support the vascular network and also induces them to secrete inflammatory molecules typical of the cytokine storm. The instability is more evident in adult cells compared with young cells.

We can inhibit these reactions with an antibody  directed to the CD147 receptor, which suggests this is a viable method to shield human pericytes.

Our pre-prints in BioRXiv and the Lancet have received a lot of attention to date.

Q: What’s next?

Because cardiovascular patients are more  susceptible to complications from COVID-19, we  want to integrate the shielding approach of vascular cells within a more general strategy to protect the human body at the early stages of the disease.

A BHF grant is funding our work for one year. This work is carried out by Dr Elisa Avolio on cardiac pericytes provided by Professor Massimo Caputo, both acting as co-PIs.

As part of Bristol’s collective research effort into  COVID-19, we are seeking an additional  contribution from other charities and funding  agencies to work with fellow Bristol researchers  to generate an aerosol containing blockers of  entrance and attachment receptors.

This post first appeared in the March 2021 BHI Newsletter

BHF PhD programme funding renewed

BHI Deputy Director Alastair Poole explains the impact for our PhD in Integrative Cardiovascular Sciences.

In December 2020, the British Heart Foundation (BHF) announced new funding for its flagship four-year PhD programmes at 12 universities, aimed at nurturing the next generation of cardiovascular research leaders.

At the University of Bristol, we have been running the popular PhD programme in Integrative Cardiovascular Sciences since 2017, with tuition fees and research costs fully-funded by the BHF.

Understanding the biology and medicine of the cardiovascular system now requires approaches that cross-bridge disciplines, with our current cohort of students working across fundamental bioscience, clinical science and population health.

In this renewal, we aim to build on this successful strategy, introducing new disciplinary strands, supervisors and training in digital health, data analytics, coding and bioengineering. This aligns to the BHF strategy in aiming to prevent disease, identify and manage risk factors, through large scale genomics, data science, AI and multiparameter monitoring of environmental and medical measurements using novel personal and environmental devices. Bioengineering is now seen as an important component of regenerative medicine, and capitalizing on our broad base of expertise in Bristol, we have incorporated several new supervisors into this element. These will provide additional depth and breadth to the training for our students and further opportunities for innovative cardiovascular discovery.

When the funding was announced, Professor Metin Avkiran, the BHF’s Associate Medical Director, said:

“Today’s PhD students are tomorrow’s leaders in cardiovascular research. At this difficult time, it is more important than ever to maintain that pipeline of scientific talent and discovery towards future advances in the prevention, detection and treatment of heart and circulatory diseases.”

We look forward to welcoming our newest BHF PhD students in 2021.

PhD student Ffion Jones talks about what she enjoys about the programme:

This post first appeared in the March 2021 BHI Newsletter