Anti-aging gene shown to rewind heart age by 10 years

Press release issued: 23 January 2023

An anti-aging gene discovered in a population of centenarians has been shown to rewind the heart’s biological age by 10 years. The breakthrough, published in Cardiovascular Research and led by scientists at the University of Bristol and the MultiMedica Group in Italy, offers a potential target for patients with heart failure.

Associated with exceptional longevity, carriers of healthy mutant genes, like those living in blue zones of the planet, often live to 100 years or more and remain in good health. These individuals are also less prone to cardiovascular complications. Scientists funded by the British Heart Foundation believe the gene helps to keep their hearts young by protecting them against diseases linked to aging, such as heart failure.

In this new study, researchers demonstrate that one of these healthy mutant genes, previously proved particularly frequent in centenarians, can protect cells collected from patients with heart failure requiring cardiac transplantation.

The Bristol team, led by Professor Paolo Madeddu, has found that a single administration of the mutant anti-aging gene halted the decay of heart function in middle-age mice. Even more remarkably, when given to elderly mice, whose hearts exhibit the same alterations observed in elderly patients, the gene rewound the heart’s biological clock age by the human equivalent of more than ten years.

Professor Madeddu, Professor of Experimental Cardiovascular Medicine from Bristol Heart Institute at the University of Bristol and one of the study’s authors, explained: “The heart and blood vessel function is put at stake as we age. However, the rate at which these harmful changes occur is different among people. Smoking, alcohol, and sedentary life make the aging clock faster. Whereas eating well and exercising delay the heart’s aging clock.

“In addition, having good genes inherited from parents can help to stay young and healthy. Genes are sequences of letters that encode proteins. By chance, some of these letters can mutate. Most of these mutations are insignificant; in a few cases, however, the mutation can make the gene function worse or better, like for the mutant anti-aging gene we have studied here on human cells and older mice.”

The three-year study was also performed in test tube human cardiac cells in Italy. Researchers from the MultiMedica Group in Milan led by Professor Annibale Puca, administered the gene in heart cells from elderly patients with severe heart problems, including transplantation, and then compared their function with those of healthy individuals.

Monica Cattaneo, a researcher of the MultiMedica Group in Milan, Italy, and first author of the work, said: “The cells of the elderly patients, in particular those that support the construction of new blood vessels, called ‘pericytes’, were found to be less performing and more aged. By adding the longevity gene/protein to the test tube, we observed a process of cardiac rejuvenation: the cardiac cells of elderly heart failure patients have resumed functioning properly, proving to be more efficient in building new blood vessels.”

Centenarians pass their healthy genes to their offspring. The study demonstrates for the first time that a healthy gene found in centenarians could be transferred to unrelated people to protect their hearts. Other mutations might be found in the future with similar or even superior curative potential than the one investigated by this research. Professor Madeddu and Professor Annibale Puca of the MultiMedica Group believe this study may fuel a new wave of treatments inspired by the genetics of centenarians.

Professor Madeddu added: “Our findings confirm the healthy mutant gene can reverse the decline of heart performance in older people. We are now interested in determining if giving the protein instead of the gene can also work. Gene therapy is widely used to treat diseases caused by bad genes. However, a treatment based on a protein is safer and more viable than gene therapy.

“We have received funding from the Medical Research Council to test healthy gene therapy in Progeria. This genetic disease, also known as Hutchinson-Gilford syndrome, causes early aging damage to children’s hearts and blood vessels. We have also been funded by the British Heart Foundation and Diabetes UK to test the protein in older and diabetic mice, respectively.”

Annibale Puca, Head of the laboratory at the IRCCS MultiMedica and Professor at the University of Salerno, added: “Gene therapy with the healthy gene in mouse models of disease has already been shown to prevent the onset of atherosclerosis, vascular aging, and diabetic complications, and to rejuvenate the immune system.

“We have a new confirmation and enlargement of the therapeutic potential of the gene/protein. We hope to test its effectiveness soon in clinical trials on patients with heart failure.”

The study is funded by the British Heart Foundation and the Italian Ministry of Health.

Paper

The longevity-associated BPIFB4 gene supports cardiac function and vascularization in aging cardiomyopathy‘ by Annibale Puca et al. in Cardiovascular Research [open access]

New research lifts the lid on cardiac microvascular dysfunction

New research has shown abnormalities in the tiny blood vessels of human hearts in regions well beyond the large arteries with atherosclerotic blockages that trigger the need for stents or bypass surgery. The findings could lead to the development of new treatments for patients with angina-like symptoms without blockages or those recovering from a heart attack or unexplained heart failure.

Normal intrinsic constriction of these micro-arteries in response to changing blood pressure is called myogenic (automatic) tone. Myogenic tone controls blood flow distribution within the heart muscle, and in other parts of the human body.

Current heart scans can identify blockages in large coronary arteries, but they are unable to show these tiny, hair size micro-arteries in patients, making it impossible to diagnose poor myogenic tone, which is thought to develop independent of disease in the larger arteries. This study used tissue biopsies to study the function, structure and alterations in pathways in the micro-arteries that link to abnormalities in myogenic tone.

The study, led by Professor Raimondo Ascione (Clinical Lead) at the University of Bristol and Professor Kim Dora (Basic Science Lead) at the University of Oxford, and funded by the BHF, is published in Cardiovascular Research.

The research team took small heart samples, that are otherwise discarded, from 88 patients with no large coronary artery blockages and undergoing valvular cardiac surgery at the Bristol Heart Institute. In addition, cardiac samples were obtained from three human organ donors from the Newcastle Institute of Transplantation Tissue Biobank and 45 pigs treated at the University of Bristol Translational Biomedical Research Centre (TBRC).

The research team found that 44 per cent of the micro-arteries from patients had abnormal myogenic tone despite retaining their cell viability. This abnormality was associated with an excessive presence of a molecule called caldesmon within the muscle cells in the wall of the abnormal micro-arteries and with poor alignment of these contracting cells compared to micro-arteries with normal myogenic tone from the other 66 per cent of patients, and all the organ donors and pigs.

Abnormalities in the micro-arteries affects the blood supply within the beating heart, and other organs in the body, affecting people’s quality of life and life expectancy.

The findings offer new insights on coronary microvascular dysfunction that could predate the development of clinically known heart disease such as heart failure.

Professor Raimondo Ascione, NHS Consultant Cardiac Surgeon and Head of the TBRC at the University of Bristol, said:

“It has been a pleasure to work with Professor Dora on this landmark study over the last seven years. No study had focused on ex vivo poor myogenic tone of the cardiac microcirculation before. These tiny arteries are sited deep within the cardiac wall, well beyond the blocked arteries we treat in the NHS with stents or bypass surgery and cannot be seen with a naked eye.

“Our study lifts the lid on cardiac microvascular dysfunction. It could help to develop new treatments to help patients with angina-like symptoms without coronary blockages, or those recovering from a heart attack or unexplained heart failure.”

Kim Dora, Professor of Microvascular Pharmacology at the University of Oxford, explained:

“I am so excited with the results of this study and the excellent teamwork with Professor Ascione in Bristol.  Not only will our findings enhance the development of new medical treatments and possibly new patient imaging modalities, but they represent a new ex-vivo research model for thousands of scientists globally working on microvascular dysfunction in the heart and other organs.”

Professor Jeremy Pearson, Associate Medical Director at the British Heart Foundation, added:

“This study is the first to develop techniques to understand the links between the structure of micro-arteries and impaired myogenic tone, representing the outcome of years of painstaking work to develop the methods and apply them to micro-arteries from human hearts. The findings provide new information that will help to develop treatments for the many patients whose angina occurs without significant narrowing of their coronary arteries.”

There is now a new area of research that confirms thousands of patients, mostly postmenopausal women, have angina-like symptoms despite their coronary angiogram showing no obvious blockages of the large epicardial arteries in the heart that are usually treated with stent or bypass. Other patients seem to develop heart failure associated with either the contraction or the relaxation of their heart for no obvious reasons.

The human coronary micro-arteries the Bristol and Oxford team has studied in the laboratory represent the microvascular area in human organs (lung, heart, brain and elsewhere) where COVID-19 has caused most of the problems during the ongoing pandemic.

Paper

Human coronary microvascular contractile dysfunction associates with viable 2 synthetic smooth muscle cells‘ by Kim A Dora, Raimondo Ascione et al in Cardiovascular Research [open access]